-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
Automated rock recognition is a key step for building a fully autonomous mine. When characterizing rock types from drill performance data, the main challenge is that there is not an obvious one-to-one correspondence between the two. In this paper, a hybrid rock recognition approach is proposed which combines Gaussian Process (GP) regression with clustering. Drill performance data is also known as Measurement While Drilling (MWD) data and a rock hardness measure - Adjusted Penetration Rate (APR) is extracted using the raw data in discrete drill holes. GP regression is then applied to create a more dense APR distribution, followed by clustering which produces discrete class labels. No initial labeling is needed. Comparisons are made with alternative measures of rock hardness from MWD data as well as state-of-the-art GP classification. Experimental results from an actual mine site show the effectiveness of our proposed approach.