Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Nanowire field-effect transistors (nano-FETs) are nano devices capable of highly sensitive, label-free sensing of molecules. However, significant variations in sensitivity across devices can result from poor control over device parameters, such as nanowire diameter and the number of electrode-bridging nanowires. This paper presents a fabrication approach that uses wafer-scale nanowire contact printing for throughput and uses automated nanomanipulation for precision control of nanowire number and diameter. The process requires only one photolithography mask. Using nanowire contact printing and post processing (i.e., nanomanipulation inside scanning electron microscope), we are able to produce devices all with a single nanowire and similar diameters at a speed of ~1 min/device with a success rate of 95% (n=500). This technology represents a seamless integration of wafer-scale microfabrication and automated nanorobotic manipulation for producing nano-FET sensors with consistent response across devices.

Questions and Answers

You need to be logged in to be able to post here.