-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
A critical problem in planning sampling paths for autonomous underwater vehicles is balancing obtaining an accurate scalar field estimation against efficiently utilizing the stored energy capacity of the sampling vehicle. Adaptive sampling approaches can only provide solutions when real-time and a priori environmental data is available. Through utilizing a cost-evaluation function to experimentally evaluate various sampling path strategies for a wide range of scalar fields and sampling densities, it is found that a systematic spiral sampling path strategy is optimal for high-variance scalar fields for all sampling densities and low-variance scalar fields when sampling is sparse. The random spiral sampling path strategy is found to be optimal for low-variance scalar fields when sampling is dense.