Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Assessing the visual realism of images is increasingly becoming an essential aspect of fields ranging from computer graphics (CG) rendering to photo manipulation. In this paper we systematically evaluate factors underlying human perception of visual realism and use that information to create an automated assessment of visual realism. We make the following unique contributions. First, we established a benchmark dataset of images with empirically determined visual realism scores. Second, we identified attributes potentially related to image realism, and used correlational techniques to determine that realism was most related to image naturalness, familiarity, aesthetics, and semantics. Third, we created an attributes-motivated, automated computational model that estimated image visual realism quantitatively. Using human assessment as a benchmark, the model was below human performance, but outperformed other state-of-the-art algorithms.

Questions and Answers

You need to be logged in to be able to post here.