Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

Underwater vehicles do not localise or navigate with respect to the flow, an ability needed for many underwater tasks. In this paper we implement rheotaxis behaviour in a fish robot, a behaviour common to many aquatic species. We use two pressure sensors on the head of the robot to identify the pressure differences on the left and right side and control the heading of the fish robot by turning a servo-motor actuated tail. The controller is inspired by the Braitenberg vehicle 2b, a simple biological model of tropotaxis, that has been used in many robotic applications. The experiments, conducted in a flow pipe with a uniform flow, show that the robot is able to orient itself, and keep the orientation, to the incoming current. Our results demonstrate that guidance of a fish robot relative to a flow can be implemented as a simple rheotaxis behaviour using two sensors and a Braitenberg 2b controller.

Questions and Answers

You need to be logged in to be able to post here.