Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


This paper presents an adaptive sparse sampling approach and the corresponding real-time scalar field reconstruction method using mobile sensor networks. Traditionally, the sampling methods collect measurements without considering possible distributions of target signals. A feedback driven algorithm is discussed in this paper, where new measurements are determined based on the analysis of existing observations. The information amount of each potential measurement is evaluated under a sparse domain based on compressive sensing framework given all existing information shared among networked mobile sensors, and the most informative one is selected. The efficiency of this information-driven method falls into the information maximization for each individual measurement. The simulation results show the efficacy and efficiency of this approach, where a scalar field is recovered.

Questions and Answers

You need to be logged in to be able to post here.