Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


The applicability of non-linear support vector machines (SVMs) has been limited in large-scale data collections because of their linear prediction complexity to the size of support vectors. We propose an efficient prediction algorithm with performance guarantee for non-linear SVMs, termed AdaptSVM. It can selectively collapse the kernel function computation to a reduced set of support vectors, compensated by an additional correction term that can be easily computed on-line. It also allows adaptive fall-back to original kernel computation based on its estimated variance and maximum error tolerance. In addition to theoretical analysis, we empirically evaluate on multiple large-scale datasets to show that the proposed algorithm can speed up the prediction process up to 10000 times with only <0.5 accuracy loss.

Questions and Answers

You need to be logged in to be able to post here.