-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
Action analysis in image and video has been attracting more and more attention in computer vision. Recognizing specific actions in video clips has been the main focus. We move in a new, more general direction in this paper and ask the critical fundamental question: what is action, how is action different from motion, and in a given image or video where is the action? We study the philosophical and visual characteristics of action, which lead us to define actionness: intentional bodily movement of biological agents (people, animals). To solve the general problem, we propose the lattice conditional ordinal random field model that incorporates local evidence as well as neighboring order agreement. We implement the new model in the continuous domain and apply it to scoring actionness in both image and video datasets. Our experiments demonstrate not only that our new model can outperform the popular ranking SVM but also that indeed action is distinct from motion.