-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
A major challenge in high-speed Atomic Force Microscopy is the low vertical bandwidth of the Z-scanner feedback loop. The maximum vertical feedback bandwidth is limited by the first Z-axis resonance frequency of the scanner. In this article, the design of a fast Z-scanner for high-speed Atomic Force Microscopy is presented. The Z-scanner consists of a piezoelectric stack actuator and a diaphragm flexure. The flexure provides the necessary preload to the actuator to prevent it from getting damaged during high-speed scans. A finite-element-analysis based optimization method is used to achieve a high resonance frequency of about 60 kHz. A counterbalance is added to the Z-scanner to minimize the inertial effect which tends to cause vibrations in the lateral axes of the device. This mechanical design enabled us to achieve a closed-loop vertical control bandwidth of 6.5 kHz. This is significantly higher than the closed loop bandwidth of the commercial AFM in which this stage was tested. AFM images of a test grating with sharp corners were recorded at a resolution of 200 x 200 pixels at 10 Hz, 100 Hz and 200 Hz line rates without noticeable image artifacts due to insufficient vertical bandwidth and vibrations.