Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


A major challenge in high-speed Atomic Force Microscopy is the low vertical bandwidth of the Z-scanner feedback loop. The maximum vertical feedback bandwidth is limited by the first Z-axis resonance frequency of the scanner. In this article, the design of a fast Z-scanner for high-speed Atomic Force Microscopy is presented. The Z-scanner consists of a piezoelectric stack actuator and a diaphragm flexure. The flexure provides the necessary preload to the actuator to prevent it from getting damaged during high-speed scans. A finite-element-analysis based optimization method is used to achieve a high resonance frequency of about 60 kHz. A counterbalance is added to the Z-scanner to minimize the inertial effect which tends to cause vibrations in the lateral axes of the device. This mechanical design enabled us to achieve a closed-loop vertical control bandwidth of 6.5 kHz. This is significantly higher than the closed loop bandwidth of the commercial AFM in which this stage was tested. AFM images of a test grating with sharp corners were recorded at a resolution of 200 x 200 pixels at 10 Hz, 100 Hz and 200 Hz line rates without noticeable image artifacts due to insufficient vertical bandwidth and vibrations.

Questions and Answers

You need to be logged in to be able to post here.