Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

This paper presents the first attempt to use word embeddings to predict the compositionality of multiword expressions. We consider both single- and multi-prototype word embeddings. Experimental results show that, in combination with a back-off method based on string similarity, word embeddings outperform a method using count-based distributional similarity. Our best results are competitive with, or superior to, state-of-the-art methods over three standard compositionality datasets, which include two types of multiword expressions and two languages.

Questions and Answers

You need to be logged in to be able to post here.