Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Building a photorealistic, 3D model of an object or a complete scene from image-based methods is a fundamental problem in computer vision, and has many applications in robotic perception, navigation, exploration and mapping. In this paper, we extend current state-of-the-art in the computation of depth maps by presenting an accurate and computationally efficient iterative hierarchical algorithm for multi-view stereo. The algorithm is designed to utilise all available contextual information to compute highly-accurate and robust depth maps by iteratively examining different image resolutions in an image-pyramid. The novelty in our approach is that we are able to incrementally improve the depth fidelity as the algorithm progresses through the image pyramid by utilising a local method. This is achieved in a computationally efficient manner by simultaneously enforcing the consistency of the depth-map by continual comparison with neighbouring depth-maps. We present a detailed description of the algorithm, and describe how each step is carried out. The proposed technique is used to analyse multi-view stereo data from two well-known, standard datasets, and presented results show a significant decrease in computation time, as well as an increase in overall accuracy of the computed depth maps.

Questions and Answers

You need to be logged in to be able to post here.