-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
In this paper, an efficient real-time autonomous driving motion planner with trajectory optimization is proposed. The planner first discretizes the plan space and searches for the best trajectory based on a set of cost functions. Then an iterative optimization is applied to both the path and speed of the resultant trajectory. The post-optimization is of low computational complexity and is able to converge to a higherquality solution within a few iterations. Compared with the planner without optimization, this framework can reduce the planning time by 52% and improve the trajectory quality. The proposed motion planner is implemented and tested both in simulation and on a real autonomous vehicle in three different scenarios. Experiments show that the planner outputs highquality trajectories and performs intelligent driving behaviors.