Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

We propose a spectral clustering algorithm for the multi-view setting where we have access to multiple views of the data, each of which can be independently used for clustering. Our spectral clustering algorithm has a flavor of co-training, which is already a widely used idea in semi-supervised learning. We work on the assumption that the true underlying clustering would assign a point to the same cluster irrespective of the view. Hence, we constrain our approach to only search for the clusterings that agree across the views. Our algorithm does not have any hyperparameters to set, which is a major advantage in unsupervised learning. We empirically compare with a number of baseline methods on synthetic and real-world datasets to show the efficacy of the proposed algorithm.

Questions and Answers

You need to be logged in to be able to post here.