-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
Weighted median, in the form of either solver or filter, has been employed in a wide range of computer vision solutions for its beneficial properties in sparsity representation. But it is hard to be accelerated due to the spatially varying weight and the median property. We propose a few efficient schemes to reduce computation complexity from O(r2) to O(r) where r is the kernel size. Our contribution is on a new joint-histogram representation, median tracking, and a new data structure that enables fast data access. The effectiveness of these schemes is demonstrated on optical flow estimation, stereo matching, structure-texture separation, image filtering, to name a few. The running time is largely shortened from several minutes to less than 1 second. The source code is provided in the project website.