TechTalks from event: Technical session talks from ICRA 2012

Conference registration code to access these videos can be accessed by visiting this link: PaperPlaza. Step-by-step to access these videos are here: step-by-step process .
Why some of the videos are missing? If you had provided your consent form for your video to be published and still it is missing, please contact support@techtalks.tv

Path Planning and Navigation

  • Reliable Indoor Navigation with an Unreliable Robot: Allowing Temporary Uncertainty for Maximum Mobility Authors: Lewis, Jeremy; O'Kane, Jason
    In this work we consider a navigation problem for a very simple robot equipped with only a map, compass, and contact sensor. Our prior work on this problem uses a graph to navigate between the convex vertices of an environment. In this paper, we extend this graph with the addition of a new node type and four new edge types. The new node type allows for more uncertainty in robot position. The presence of one of these new edge types guarantees reliable transitions between these nodes. This enhanced graph enables the algorithm to navigate environment features not solvable by our previous algorithm, including T-junctions and long halls. We also present a heuristic to accelerate the planning process by prioritizing the promising edge tests to perform. Our heuristic effectively focuses the search and qualitative data show that it computes plans with much less computational effort than a naive approach. We describe a simulated implementation of the algorithm that finds paths not previously possible, and a physical implementation that demonstrates the feasibility of executing those plans in practice.
  • Path Planning in Time Dependent Flow Fields Using Level Set Methods Authors: Lolla, Tapovan; Ueckermann, Mattheus Percy; Haley, Patrick; Lermusiaux, Pierre F.J.
    We develop and illustrate an efficient but rigorous methodology that predicts the time-optimal paths of ocean vehicles in continuous dynamic flows. The goal is to best utilize or avoid currents, without limitation on these currents or on the number of vehicles. The methodology employs a new modified level set equation to evolve a front from the starting point of a vehicle until it reaches the desired goal location, combining flow advection with nominal vehicle motion. The optimal path of the vehicle is then obtained by solving a particle tracking equation backward in time. The computational cost of this method increases linearly with the number of vehicles and geometrically with spatial dimensions. The methodology is applicable to any continuous flow and in scenarios with multiple vehicles. Present illustrations consist of the crossing of a canonical uniform jet and its validation using a classic optimization solution, as well as swarm formation in more complex time varying 2D flow fields, including jets, eddies and forbidden regions.
  • Provably Safe Navigation for Mobile Robots with Limited Field-Of-Views in Unknown Dynamic Environments Authors: bouraine, sara; Fraichard, Thierry; salhi, hassen
    This paper addresses the problem of navigating a mobile robot with a limited field-of-view in a unknown dynamic environment. In such a situation, absolute motion safety, i.e. such that no collision will ever take place whatever happens, is impossible to guarantee. It is therefore settled for a weaker level of motion safety dubbed passive motion safety: it guarantees that, if a collision takes place, the robot will be at rest. Passive motion safety is tackled using a variant of the Inevitable Collision State (ICS) concept called Braking ICS, i.e. states such that, whatever the future braking trajectory of the robot, a collision occurs before it is at rest. Passive motion safety is readily obtained by avoiding Braking ICS at all times. Building upon an existing Braking ICS-Checker, i.e. an algorithm that checks if a given state is a Braking ICS or not, this paper presents a reactive collision avoidance scheme called PassAvoid. The main contribution of this paper is the formal proof of PassAvoid's passive motion safety. Experiments in simulation demonstrates how PassAvoid operates.
  • An Efficient Mobile Robot Path Planning Using Hierarchical Roadmap Representation in Indoor Environment Authors: Park, Byungjae; Choi, Jinwoo; Chung, Wan Kyun
    This paper describes a practical approach to solve a path planning problem in a home environment. The proposed approach incrementally constructs the hierarchical roadmap which has a multi-layered structure using a sonar grid map when a mobile robot navigates in unexplored area. The hierarchical roadmap can almost completely cover the traversable areas in the environment. The mobile robot path planner using the hierarchical roadmap can efficiently search for appropriate paths under the limited computing power and time by reducing the search space size. The benefits of the hierarchical roadmap representation were verified by experiments in a home environment.
  • 3D Time-Space Path Planning Algorithm in Dynamic Environment Utilizing Arrival Time Field and Heuristically Randomized Tree Authors: Ardiyanto, Igi; Miura, Jun
    This paper deals with a path planning problem in the dynamic and cluttered environments. The presence of moving obstacles and kinodynamic constraints of the robot increases the complexity of path planning problem. We model the environment and motion of dynamic obstacles in <i>3D time-space</i>. We propose the utilization of <i>the arrival time field</i> for examining the most promising area in those <i>obstacles-occupied</i> 3D time-space for approaching the goal. The arrival time field is used for guiding the expansion of a randomized tree search in a favorable way, considering kinodynamic constraints of the robot. The quality and the optimality of the path are taken into account by performing heuristic methods on the randomized tree. Simulation results are also provided to prove the feasibility, possibility, and effectiveness of our algorithm.
  • High-Speed Navigation of a Uniformly Braking Mobile Robot Using Position-Velocity Configuration Space Authors: Manor, Gil; Rimon, Elon
    This paper considers the problem of fast autonomous mobile robot navigation between obstacles while attempting to maximize velocity subject to safe braking constraints. The paper introduces position-velocity configuration space. Within this space, keeping a uniform braking distance from the obstacles can be modeled as forbidden regions called vc-obstacles. Using Morse Theory, the paper characterizes the critical position-velocity points where two vc-obstacles meet and locally disconnect the free position-velocity space. These points correspond to critical events where the robot's velocity becomes too large to support safe passage between neighboring obstacles. The velocity dependent critical points induce a cellular decomposition of the free position-velocity space into cells. Each cell is associated with a particular range of velocities that can be safely followed by the robot. The paper proposes a practical algorithm that searches the cells' adjacency graph for a maximum velocity path. The algorithm outputs a pseudo time optimal path which maintains safe braking distance from the obstacles throughout the robot motion. Simulations demonstrate the algorithm and highlight the usefulness of taking the path's velocity into account during the path planning process.

Semiconductor Manufacturing

  • Fabrication of a Microcoil through Parallel Microassembly Authors: Chu, Henry; Mills, James K.; Cleghorn, William L.
    This paper presents the fabrication of a three-dimensional microcoil through the technique of microassembly. The microcoil design is comprised of nine out-of-plane micro-sized windings. Each winding was assembled onto the base substrate orthogonally by a robotic manipulator through microassembly. In contrast to the conventional serial pick-and-place microassembly, this work incorporated the approach of parallel microassembly to grasp and assemble three windings onto the base substrate simultaneously for increased productivity. In addition, a vision-based algorithm was developed to automate the parallel grasping process of three windings. This algorithm utilized well-defined templates to provide high-precision position and orientation evaluations for the micro-sized components. The performance of the microcoil fabrication process was evaluated and discussed. To establish better electrical contact between the windings and the base substrate, conductive adhesive was introduced in the assembly process and the electrical properties of the assembled microcoil structure were examined.
  • Petri Net-Based Real-Time Scheduling of Time-Constrained Single-Arm Cluster Tools with Activity Time Variation Authors: Qiao, Yan; Wu, Naiqi; Zhou, MengChu
    It is very challenging to schedule time-constrained cluster tools subject to activity time variation. This work adopts our previously developed real-time control policy to offset the activity time variation in single-arm cluster tools. Then it derives analytical schedulability conditions and efficient scheduling algorithms for the first time. The resultant schedule executed together with the real-time control policy forms a real-time schedule. It is proven optimal in terms of cycle time. A semiconductor wafer production example is used to illustrate the research results.
  • Scheduling Transient Periods of Single-Armed Cluster Tools Authors: Lee, Jun-Ho; Lee, Tae-Eog
    Semiconductor manufacturing fabs recently tend to reduce the lot size, that is, the number of identical wafers in a lot, because of small lot orders and increased die throughput per wafer due to wafer size increase. Therefore, cluster tools for wafer processing, which mostly repeat identical work cycles, are subject to frequent lot changes. We therefore examine scheduling problems for transient periods of single-armed cluster tools that are scheduled to repeat identical work cycles for a number of identical wafers. We first develop a Petri net model for the tool’s operational behavior including the initial transient periods as well as the steady cycles. We then develop a mixed integer programming model for finding an optimal schedule. We also examine how to adapt the simple backward sequence, which is mostly used for scheduling steady work cycles of single-armed cluster tools, for a transient period. We identify a deadlock-free condition and also propose two efficient heuristic algorithms by modifying the backward sequence. Finally, through computational experiments, we analyze the efficiency of the proposed algorithms.
  • DNA as Template for Nanobonding and Novel Nanoelectronic Components Authors: Weigel-Jech, Michael; Fatikow, Sergej
    The importance of nanoelectronics for the future is well-recognized. Next-generation nanoelectronic technologies, for the usage in intelligent implants, intelligent drugs or even ICs for the coupling of destroyed nerves, are sensitive to dimensional change. Therefore, an appropriate packaging is essential to the success or failure of these technologies. In this paper current work to use DNA as a template for bonding at the nanoscale and for novel nanoelectronic components is presented. Moreover, a method is presented, which enables the handling and manipulation of DNA at dry conditions, thus enabling the feasible usage for industrial purposes as well as for science. For this the necessary steps, starting with the immobilization and choice of useable nanowires, followed by the extraction and separation of these wires, the coarse positioning, the immobilization onto the target substrates as well as a proper fine tuning at the target are presented.
  • The Robustness of Scheduling Policies in Multi-Product Manufacturing Systems with Sequence-Dependent Setup Times and Finite Buffers Authors: FENG, Wei; Li, Jingshan; Zheng, Li
    In this paper, a continuous time Markov chain model is introduced to study multi-product manufacturing systems with sequence-dependent setup times and finite buffers under seven scheduling policies, i.e., cyclic, shortest queue, shortest processing time, shortest overall time (including setup time and processing times), longest queue, longest processing time, and longest overall time. In manufacturing environments, optimal solution may not be applicable due to uncertainty and variation in system parameters. Therefore, in this paper, in addition to comparing the system throughput under different policies, we introduce the notion of robustness of scheduling policies. Specifically, a policy that can deliver good and stable performance resilient to variations in system parameters (such as buffer sizes, processing rates, setup times, etc.) is viewed as a ``robust'' policy. Numerical studies indicate that the cyclic and longest queue policies exhibit robustness in subject to parameter changes. This can provide production engineers a guideline in operation management.

Haptics

  • A Compact Tactile Display Suitable for Integration in VR and Teleoperation Authors: Sarakoglou, Ioannis; Tsagarakis, Nikolaos; Caldwell, Darwin G.
    Haptic feedback should integrate kinaesthetic and tactile feedback. However current haptic displays do not satisfy the stringent performance and design requirements for integration in teleoperation and VR. This work presents the development of a compact, high performance tactile display for the fingertip. The compact design, high performance, reliability, and simple connectivity of this display make it suitable for immediate integration in current VR and master-slave haptic systems. In terms of performance this display achieves an excellent combination of force, amplitude and spatiotemporal resolution at the tactors, surpassing the performance of devices of a similar footprint. Its operation is based on the display of surface shape to an area of the fingertip through a 4x4 array of vertically moving tactors. The tactors are spring loaded and are actuated remotely by dc motors through a flexible tendon transmission. This work presents the overall design, control and performance of the device. A preliminary analysis of the transmission system is presented and is used to compensate for output errors induced by component elasticity.
  • Risk-Sensitive Optimal Feedback Control for Haptic Assistance Authors: Medina Hernandez, Jose Ramon; Lee, Dongheui; Hirche, Sandra
    While human behavior prediction can increase the capability of a robotic partner to generate anticipatory behavior during physical human robot interaction (pHRI), predictions in uncertain situations can lead to large disturbances for the human if they do not match the human intentions. In this paper, we present a risk-sensitive optimal feedback controller for haptic assistance. The human behavior is modeled using probabilistic learning methods and any unexpected disturbance is considered as a source of noise. The controller considers the inherent uncertainty of the probabilistic model and the process noise in the dynamics in order to adapt the behavior of the robot accordingly. The proposed approach is evaluated in situations with different uncertainties, process noise and risk-sensitivities in a 2 Degree-of-Freedom virtual reality setup.
  • Integration Framework for NASA NextGen Volumetric Cockpit Situation Display with Haptic Feedback Authors: Robles, Jose; Sguerri, Matthew; Rorie, Conrad; Vu, Kim-Phuong; Strybel, Thomas; Marayong, Panadda
    In this paper, we present a framework for the integration of force feedback information in a NASA NextGen Volumetric Cockpit Situation Display (CSD). With the current CSD, the user retrieves operational information solely through visual displays and interacts with the CSD tools through using a mouse. The advanced capabilities of the CSD may require complex manipulation of information which may be difficult to perform with input devices found in today’s cockpits. Performance with the CSD could benefit from a new user input device and enhanced user feedback modalities that can be operated safely, effectively, and intuitively in a cockpit environment. In this work, we investigate the addition of force feedback in two key CSD tasks: object selection and route manipulation. Different force feedback models were applied to communicate guidance commands, such as collision avoidance and target contact. We also discuss the development of a GUI-based software interface to allow the integration of a haptic device for the CSD. A preliminary user study was conducted on a testbed system using the Novint Falcon force-feedback device. A full experiment, assessing the effectiveness and usability of the feedback model in the CSD, will be performed in the next phase of our research.
  • Wearable Haptic Device for Cutaneous Force and Slip Speed Display Authors: Damian, Dana; Ludersdorfer, Marvin; Kim, Yeongmi; Hernandez Arieta, Alejandro; Pfeifer, Rolf; Okamura, Allison M.
    Stable grasp is the result of sensorimotor regulation of forces, ensuring sufficient grip force and the integrity of the held object. Grasping with a prosthesis introduces the challenge of finding the appropriate forces given the engineered sensorimotor prosthetic interface. Excessive force leads to unnecessary energy use and possible damage to the object. In contrast, low grip forces lead to slippage. In order for a prosthetic hand to achieve a stable grasp, the haptic information provided to the prosthesis wearer needs to display these two antagonistic grasp metrics (force and slip) in a quantified way. We present the design and evaluation of a wearable single-actuator haptic device that relays multi-modal haptic information, such as grip force and slip speed. Two belts that are activated in a mutually exclusive manner by the rotation direction of a single motor exert normal force and tangential motion on the skin surface, respectively. The wearable haptic device is able to display normal forces as a tap frequency in the range of approximately 1.5-5.0~Hz and slip speed in the range of 50-200~mm/s. Within these values, users are able to identify at least four stimulation levels for each feedback modality, with short-term training.
  • Development of a Haptic Interface Using MR Fluid for Displaying Cutting Forces of Soft Tissues Authors: Tsujita, Teppei; Ohara, Manabu; Sase, Kazuya; Konno, Atsushi; Nakayama, Masano; Abe, Koyu; Uchiyama, Masaru
    In open abdominal surgical procedures, many surgical instruments, e.g., knives, cutting shears and clamps, are generally used. Therefore, a haptic interface should display reaction force of a soft biological tissue through such a surgical instrument. Simplest solution for this difficulty is that an actual instrument is mechanically mounted on the traditional haptic interface driven by servomotors. However, operators lose a sense of reality when they change the instrument since they must perform a procedure which is not required in actual surgery for attaching/detaching the instrument to/from the haptic interface. Therefore, a novel haptic interface using MR (Magneto-Rheological) fluid is developed in this research. Rheological property of MR fluid can be changed in a short time by applied magnetic flux density. By cutting the fluid using a surgical instrument, operators can feel resistance force as if they cut tissue. However, MR fluid cannot display large deformation of soft tissues since elastic region of MR fluid is small. Therefore, a container of the fluid is moved by a motion table driven by servomotors. In this paper, concept and design of the haptic interface and performance evaluations are described.
  • Six-Degree-Of-Freedom Haptic Simulation of Organ Deformation in Dental Operations Authors: Wang, Dangxiao; Liu, Shuai; Zhang, Xin; Zhang, Yuru; Xiao, Jing
    Six-degree-of-freedom (6-DOF) haptic rendering is challenging when multi-region contacts occur between the graphic avatar of a haptic tool operated by a human user, which we call the graphic tool, and deformable objects. In this paper, we introduce a novel approach for deformation modeling based on a spring-sphere tree representation of deformable objects and a configuration-based constrained optimization method for determining the 6-dimensional configuration of the graphic tool and the contact force/torque response to the tool. This method conducts collision detection, deformation computation, and tool configuration optimization very efficiently based on the spring-sphere tree model, avoids inter-penetration, and maintains stability of haptic display without using virtual coupling. Experiments on typical dental operations are carried out to validate the efficiency and stability of the proposed method. The update rate of the haptic simulation loop is maintained at ~1kHz.