TechTalks from event: Technical session talks from ICRA 2012

Conference registration code to access these videos can be accessed by visiting this link: PaperPlaza. Step-by-step to access these videos are here: step-by-step process .
Why some of the videos are missing? If you had provided your consent form for your video to be published and still it is missing, please contact support@techtalks.tv

Autonomy and Vision for UAVs

  • Cooperative Vision-Aided Inertial Navigation Using Overlapping Views Authors: Melnyk, Igor; Hesch, Joel; Roumeliotis, Stergios
    In this paper, we study the problem of Cooperative Localization (CL) for two robots, each equipped with an Inertial Measurement Unit (IMU) and a camera. We present an algorithm that enables the robots to exploit common features, observed over a sliding-window time horizon, in order to improve the localization accuracy of both robots. In contrast to existing CL methods, which require distance and/or bearing robot-to-robot observations, our algorithm infers the relative position and orientation (pose) of the robots using only the visual observations of common features in the scene. Moreover, we analyze the system observability properties to determine how many degrees of freedom (d.o.f.) of the relative transformation can be computed under different measurement scenarios. Lastly, we present simulation results to evaluate the performance of the proposed method.
  • UAV Vision: Feature Based Accurate Ground Target Localization through Propagated Initializations and Interframe Homographies Authors: Han, Kyuseo; Aeschliman, Chad; Park, Johnny; Kak, Avinash; Kwon, Hyukseong; Pack, Daniel
    Our work presents solutions to two related vexing problems in feature-based localization of ground targets in Unmanned Aerial Vehicle(UAV) images: (i) A good initial guess at the pose estimate that would speed up the convergence to the final pose estimate for each image frame in a video sequence; and (ii) Time-bounded estimation of the position of the ground target. We address both these problems within the framework of the ICP (Iterative Closest Point) algorithm that now has a rich tradition of usage in computer vision and robotics applications. We solve the first of the two problems by frame-to-frame propagation of the computed pose estimates for the purpose of the initializations needed by ICP. The second problem is solved by terminating the iterative estimation process at the expiration of the available time for each image frame. We show that when frame-to-frame homography is factored into the iterative calculations, the accuracy of the position calculated at the time of bailing out of the iterations is nearly always sufficient for the goals of UAV vision.
  • First Results in Autonomous Landing and Obstacle Avoidance by a Full-Scale Helicopter Authors: Scherer, Sebastian; Chamberlain, Lyle; Singh, Sanjiv
    Currently deployed unmanned rotorcraft rely on carefully preplanned missions and operate from prepared sites and thus avoid the need to perceive and react to the environment. Here we consider the problems of finding suitable but previously unmapped landing sites given general coordinates of the goal and planning collision free trajectories in real time to land at the “optimal” site. This requires accurate mapping, fast landing zone evaluation algorithms, and motion planning. We report here on the sensing, perception and motion planning integrated onto a full-scale helicopter that flies completely autonomously. We show results from 8 experiments for landing site selection and 5 runs at obstacles. These experiments have demonstrated the first autonomous full-scale helicopter that successfully selects its own landing sites and avoids obstacles.
  • Real-Time Onboard Visual-Inertial State Estimation and Self-Calibration of MAVs in Unknown Environments Authors: Weiss, Stephan; Achtelik, Markus W.; Lynen, Simon; Chli, Margarita; Siegwart, Roland
    The combination of visual and inertial sensors has proved to be very popular in MAV navigation due the flexibility in weight, power consumption and low cost it offers. At the same time, coping with the big latency between inertial and visual measurements and processing images in real-time impose great research challenges. Most modern MAV navigation systems avoid to explicitly tackle this by employing a ground station for off-board processing. We propose a navigation algorithm for MAVs equipped with a single camera and an IMU which is able to run onboard and in real-time. The main focus is on the proposed speed-estimation module which converts the camera into a metric body-speed sensor using IMU data within an EKF framework. We show how this module can be used for full self-calibration of the sensor suite in real-time. The module is then used both during initialization and as a fall-back solution at tracking failures of a keyframe-based VSLAM module. The latter is based on an existing high-performance algorithm, extended such that it achieves scalable 6DoF pose estimation at constant complexity. Fast onboard speed control is ensured by sole reliance on the optical flow of at least two features in two consecutive camera frames and the corresponding IMU readings. Our nonlinear observability analysis and our real experiments demonstrate that this approach can be used to control a MAV in speed, while we also show results of operation at 40 Hz on an onboard Atom computer 1.6 GHz.
  • Autonomous Landing of a VTOL UAV on a Moving Platform Using Image-Based Visual Servoing Authors: Lee, Daewon; Ryan, Tyler; Kim, H. Jin
    In this paper we describe a vision-based algorithm to control a vertical-takeoff-and-landing unmanned aerial vehicle while tracking and landing on a moving platform. Specifically, we use image-based visual servoing (IBVS) to track the platform in two-dimensional image space and generate a velocity reference command used as the input to an adaptive sliding mode controller. Compared with other vision-based control algorithms that reconstruct a full three-dimensional representation of the target, which requires precise depth estimation, IBVS is computationally cheaper since it is less sensitive to the depth estimation allowing for a faster method to obtain this estimate. To enhance velocity tracking of the sliding mode controller, an adaptive rule is described to account for the ground effect experienced during the maneuver. Finally, the IBVS algorithm integrated with the adaptive sliding mode controller for tracking and landing is validated in an experimental setup using a quadrotor.

RGB-D Localization and Mapping

  • Efficient Scene Simulation for Robust Monte Carlo Localization Using an RGB-D Camera Authors: Fallon, Maurice; Johannsson, Hordur; Leonard, John
    This paper presents Kinect Monte Carlo Localization (KMCL), a new method for localization in three dimensional indoor environments using RGB-D cameras, such as the Microsoft Kinect. The approach makes use of a low fidelity a priori 3-D model of the area of operation composed of large planar segments, such as walls and ceilings, which are assumed to remain static. Using this map as input, the KMCL algorithm employs feature-based visual odometry as the particle propagation mechanism and utilizes the 3-D map and the underlying sensor image formation model to efficiently simulate RGB-D camera views at the location of particle poses, using a graphical processing unit (GPU). The generated 3D views of the scene are then used to evaluate the likelihood of the particle poses. This GPU implementation provides a factor of ten speedup over a pure distance-based method, yet provides comparable accuracy. Experimental results are presented for five different configurations, including: (1) a robotic wheelchair, (2) a sensor mounted on a person, (3) an Ascending Technologies quadrotor, (4) a Willow Garage PR2, and (5) an RWI B21 wheeled mobile robot platform. The results demonstrate that the system can perform robust localization with 3D information for motions as fast as 1.5 meters per second. The approach is designed to be applicable not just for robotics but other applications such as wearable computing.
  • Robust Egomotion Estimation Using ICP in Inverse Depth Coordinates Authors: Lui, Wen Lik Dennis; Tang, Titus Jia Jie; Drummond, Tom; Li, Wai Ho
    This paper presents a 6 degrees of freedom egomotion estimation method using Iterative Closest Point (ICP) for low cost and low accuracy range cameras such as the Microsoft Kinect. Instead of Euclidean coordinates, the method uses inverse depth coordinates which better conforms to the error characteristics of raw sensor data. Novel inverse depth formulations of point-to-point and point-to-plane error metrics are derived as part of our implementation. The implemented system runs in real time at an average of 28 frames per second (fps) on a standard computer. Extensive experiments were performed to evaluate different combinations of error metrics and parameters. Results show that our system is accurate and robust across a variety of motion trajectories. The point-to-plane error metric was found to be the best at coping with large inter-frame motion while remaining accurate and maintaining real time performance.
  • Online Egomotion Estimation of RGB-D Sensors Using Spherical Harmonics Authors: Osteen, Philip; Owens, Jason; Kessens, Chad C.
    We present a technique to estimate the egomotion of an RGB-D sensor based on rotations of functions defined on the unit sphere. In contrast to traditional approaches, our technique is not based on image features and does not require correspondences to be generated between frames of data. Instead, consecutive functions are correlated using spherical harmonic analysis. An Extended Gaussian Image (EGI), created from the local normal estimates of a point cloud, defines each function. Correlations are efficiently computed using Fourier transformations, resulting in a 3 Degree of Freedom (3-DoF) rotation estimate. An Iterative Closest Point (ICP) process then refines the initial rotation estimate and adds a translational component, yielding a full 6-DoF egomotion estimate. The focus of this work is to investigate the merits of using spherical harmonic analysis for egomotion estimation by comparison with alternative 6-DoF methods. We compare the performance of the proposed technique with that of stand-alone ICP and image feature based methods. As with other egomotion techniques, estimation errors accumulate and degrade results, necessitating correction mechanisms for robust localization. For this report, however, we use the raw estimates; no filtering or smoothing processes are applied. In-house and external benchmark data sets are analyzed for both runtime and accuracy. Results show that the algorithm is competitive in terms of both accuracy and runtime, and future work will aim to
  • Incremental Registration of RGB-D Images Authors: Dryanovski, Ivan; Jaramillo, Carlos; Xiao, Jizhong
    An RGB-D camera is a sensor which outputs range and color information about objects. Recent technological advances in this area have introduced affordable RGB-D devices in the robotics community. In this paper, we present a real-time technique for 6-DoF camera pose estimation through the incremental registration of RGB-D images. First, a set of edge features are computed from the depth and color images. An initial motion estimation is calculated through aligning the features. This initial guess is refined by applying the Iterative Closest Point algorithm on the dense point cloud data. A rigorous error analysis assesses several sets of RGB-D ground truth data via an error accumulation metric. We show that the proposed two-stage approach significantly reduces error in the pose estimation, compared to a state-of-the-art ICP registration technique.
  • An Evaluation of the RGB-D SLAM System Authors: Endres, Felix; Hess, Juergen Michael; Engelhard, Nikolas; Sturm, Jürgen; Cremers, Daniel; Burgard, Wolfram
    We present an approach to simultaneous localization and mapping (SLAM) for RGB-D cameras like the Microsoft Kinect. Our system concurrently estimates the trajectory of a hand-held Kinect and generates a dense 3D model of the environment. We present the key features of our approach and evaluate its performance thoroughly on a recently published dataset, including a large set of sequences of different scenes with varying camera speeds and illumination conditions. In particular, we evaluate the accuracy, robustness, and processing time for three different feature descriptors (SIFT, SURF, and ORB). The experiments demonstrate that our system can robustly deal with difficult data in common indoor scenarios while being fast enough for online operation. Our system is fully available as open-source.
  • Depth Camera Based Indoor Mobile Robot Localization and Navigation Authors: Biswas, Joydeep; Veloso, Manuela
    The sheer volume of data generated by depth cameras provides a challenge to process in real time, in particular when used for indoor mobile robot localization and navigation. We introduce the Fast Sampling Plane Filtering (FSPF) algorithm to reduce the volume of the 3D point cloud by sampling points from the depth image, and classifying local grouped sets of points as belonging to planes in 3D (the "plane filtered" points) or points that do not correspond to planes within a specified error margin (the "outlier" points). We then introduce a localization algorithm based on an observation model that down-projects the plane filtered points on to 2D, and assigns correspondences for each point to lines in the 2D map. The full sampled point cloud (consisting of both plane filtered as well as outlier points) is processed for obstacle avoidance for autonomous navigation. All our algorithms process only the depth information, and do not require additional RGB data. The FSPF, localization and obstacle avoidance algorithms run in real time at full camera frame rates(30Hz) with low CPU requirements(16%). We provide experimental results demonstrating the effectiveness of our approach for indoor mobile robot localization and navigation. We further compare the accuracy and robustness in localization using depth cameras with FSPF vs. alternative approaches that simulate laser rangefinder scans from the 3D data.

Sampling-Based Motion Planning

  • A Scalable Method for Parallelizing Sampling-Based Motion Planning Algorithms Authors: Jacobs, Sam Ade; Burgos, Juan; Manavi, Kasra; Denny, Jory; Thomas, Shawna; Amato, Nancy
    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms.We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine.
  • LQR-RRT*: Optimal Sampling-Based Motion Planning with Automatically Derived Extension Heuristics Authors: Perez, Alejandro; Platt, Robert; Konidaris, George Dimitri; Kaelbling, Leslie; Lozano-Perez, Tomas
    The RRT* algorithm has recently been proposed as an optimal extension to the standard RRT algorithm [1]. However, like RRT, RRT* is difficult to apply in problems with complicated or underactuated dynamics because it requires the design of a two domain-specific extension heuristics: a distance metric and node extension method. We propose automatically deriving these two heuristics for RRT* by locally linearizing the domain dynamics and applying linear quadratic regulation (LQR). The resulting algorithm, LQR-RRT*, finds optimal plans in domains with complex or underactuated dynamics without requiring domain-specific design choices. We demonstrate its application in domains that are successively torquelimited, underactuated, and in belief space.
  • SR-RRT: Selective Retraction-Based RRT Planner Authors: Lee, Junghwan; Kwon, Osung; Zhang, Liangjun; Yoon, Sung-eui
    We present a novel retraction-based planner, selective retraction-based RRT, for efficiently handling a wide variety of environments that have different characteristics. We first present a bridge line-test that can identify regions around narrow passages, and then perform an optimizationbased retraction operation selectively only at those regions. We also propose a non-colliding line-test, a dual operator to the bridge line-test, as a culling method to avoid generating samples near wide-open free spaces and thus to generate more samples around narrow passages. These two tests are performed with a small computational overhead and are integrated with a retraction-based RRT. In order to demonstrate benefits of our method, we have tested our method with different benchmarks that have varying amounts of narrow passages. Our method achieves up to 21 times and 3.5 times performance improvements over a basic RRT and an optimizationbased retraction RRT, respectively. Furthermore, our method consistently improves the performances of other tested methods across all the tested benchmarks that have or do not have narrow passages.
  • Sampling-Based Motion Planning with Dynamic Intermediate State Objectives: Application to Throwing Authors: Zhang, Yajia; Luo, Jingru; Hauser, Kris
    Dynamic manipulations require attaining high velocities at specified configurations, all the while obeying geometric and dynamic constraints. This paper presents a motion planner that constructs a trajectory that passes at an intermediate state through a dynamic objective region, which is comprised of a certain lower dimensional submanifold in the configuration/velocity state space, and then returns to rest. Planning speed and reliability is greatly improved using optimizations based on the fact that ramp-up and ramp-down subproblems are coupled by the choice of intermediate state, and that very few (often less than 1%) intermediate states yield feasible solution trajectories. Simulation experiments demonstrate that our method quickly generates trajectories for a 6-DOF industrial manipulator throwing a small object.
  • Towards Small Asymptotically Near-Optimal Roadmaps Authors: Marble, James; Bekris, Kostas E.
    An exciting recent development is the definition of sampling-based motion planners which guarantee asymptotic optimality. Nevertheless, roadmaps with this property may grow too large and lead to longer query resolution times. If optimality requirements are relaxed, existing asymptotically near-optimal solutions produce sparser graphs by removing redundant edges. Even these alternatives, however, include all sampled configurations as nodes in the roadmap. This work proposes a method, which can reject redundant samples but does provide asymptotic coverage and connectivity guarantees, while keeping local path costs low. Not adding every sample can significantly reduce the size of the final roadmap. An additional advantage is that it is possible to define a reasonable stopping criterion for the approach inspired by previous methods. To achieve these objectives, the proposed method maintains a dense graph that is used for evaluating the performance of the roadmap with regards to local path costs. Experimental results show that the method indeed provides small roadmaps, allowing for shorter query resolution times. Furthermore, smoothing the final paths results in an even more advantageous comparison against alternatives with regards to path quality.
  • Proving Path Non-Existence Using Sampling and Alpha Shapes Authors: McCarthy, Zoe; Bretl, Timothy; Hutchinson, Seth
    In this paper, we address the problem determining the connectivity of a robot's free configuration space. Our method iteratively builds a constructive proof that two configurations lie in disjoint components of the free configuration space. Our algorithm first generates samples that correspond to configurations for which the robot is in collision with an obstacle. These samples are then weighted by their generalized penetration distance, and used to construct alpha shapes. The alpha shape defines a collection of simplices that are fully contained within the configuration space obstacle region. These simplices can be used to quickly solve connectivity queries, which in turn can be used to define termination conditions for sampling-based planners. Such planners, while typically either resolution complete or probabilistically complete, are not able to determine when a path does not exist, and therefore would otherwise rely on heuristics to determine when the search for a free path should be abandoned. An implementation of the algorithm is provided for the case of a 3D Euclidean configuration space, and a proof of correctness is provided.