TechTalks from event: Technical session talks from ICRA 2012

Conference registration code to access these videos can be accessed by visiting this link: PaperPlaza. Step-by-step to access these videos are here: step-by-step process .
Why some of the videos are missing? If you had provided your consent form for your video to be published and still it is missing, please contact

Space Robotics

  • Automatic Rock Recognition from Drilling Performance Data Authors: Zhou, Hang; Hatherly, Peter; Monteiro, Sildomar; Ramos, Fabio; Oppolzer, Florian; Nettleton, Eric; Scheding, Steven
    Automated rock recognition is a key step for building a fully autonomous mine. When characterizing rock types from drill performance data, the main challenge is that there is not an obvious one-to-one correspondence between the two. In this paper, a hybrid rock recognition approach is proposed which combines Gaussian Process (GP) regression with clustering. Drill performance data is also known as Measurement While Drilling (MWD) data and a rock hardness measure - Adjusted Penetration Rate (APR) is extracted using the raw data in discrete drill holes. GP regression is then applied to create a more dense APR distribution, followed by clustering which produces discrete class labels. No initial labeling is needed. Comparisons are made with alternative measures of rock hardness from MWD data as well as state-of-the-art GP classification. Experimental results from an actual mine site show the effectiveness of our proposed approach.
  • Evaluation of the Reconfiguration Effects of Planetary Rovers on their Lateral Traversing of Sandy Slopes Authors: Inotsume, Hiroaki; Sutoh, Masataku; Nagatani, Keiji; Yoshida, Kazuya
    Rovers that are used to explore craters on the Moon or Mars require the mobility to negotiate sandy slopes, on which slippage can easily occur. Such slippage can be reduced by actively readjusting the attitude of the rovers. By changing attitude, rovers can modify the position of their center of gravity and the wheel-soil contact angle. In this study, we discuss the effects of attitude changes on downhill sideslip based on the slope failure mechanism and experiments on reconfiguring the rover attitude and wheel angles. We conducted slope-traversing experiments using a wheeled rover under various roll angles and wheel angles. The experimental results show that the contact angle between wheels and slopes has a dominant influence on sideslip when compared with that of readjusting the rover's center of gravity.
  • Evaluation of Influence of Surface Shape of Locomotion Mechanism on Traveling Performance of Planetary Rovers Authors: Sutoh, Masataku; Nagaoka, Kenji; Nagatani, Keiji; Yoshida, Kazuya
    The surfaces of both the Moon and Mars are covered with loose soil, with numerous steep slopes along their crater rims. Therefore, one of the most important requirements imposed on planetary rovers is their ability to minimize slippage while climbing steep slopes, i.e., the ability to generate a drawbar pull with only a small amount of slippage. To this end, the wheels/tracks of planetary rovers typically have parallel fins called lugs (i.e., grousers) on their surface. Recent studies have reported that these lugs can substantially improve the traveling performances of planetary rovers. Therefore, in this study, we conducted experiments using lightweight two-wheeled and mono-tracked rovers to provide a quantitative confirmation regarding the influence of lugs on the traveling performances of planetary rovers. Based on our experimental results, we confirmed that, although an increase in the number of lugs contributes to the high traveling performance of wheeled rovers, it does not contribute much to that of tracked rovers. Furthermore, an increase in lug height improves the traveling performances of both types of rovers.
  • The Robonaut 2 Hand Designed to Do Work with Tools Authors: Bridgwater, Lyndon; Ihrke, Chris; Diftler, Myron; Abdallah, Muhammad; Radford, Nicolaus; Rogers, Jonathan; yayathi, Sandeep; Askew, Roger, Scott; Linn, Marty
    The second generation Robonaut hand has many advantages over its predecessor. This mechatronic device is more dexterous and has improved force control and sensing giving it the capability to grasp and actuate a wider range of tools. It can achieve higher peak forces at higher speeds than the original. Developed as part of a partnership between General Motors and NASA, the hand is designed to more closely approximate a human hand. Having a more anthropomorphic design allows the hand to attain a larger set of useful grasps for working with human interfaces. Key to the hands improved performance is the use of lower friction drive elements and a redistribution of components from the hand to the forearm, permitting more sensing in the fingers and palm where it is most important. The following describes the design, mechanical/electrical integration, and control features of the hand. Lessons learned during the development and initial operations along with planned refinements to make it more effective are presented.
  • Autonomous Detection of Volcanic Plumes on Outer Planetary Bodies Authors: Lin, Yucong; Bunte, Melissa; Saripalli, Srikanth; Greeley, Ronald
    We experimentally evaluated the efficacy of var- ious autonomous supervised classification techniques for de- tecting transient geophysical phenomena. We demonstrated methods of detecting volcanic plumes on the planetary satellites Io and Enceladus using spacecraft images from the Voyager, Galileo, New Horizons, and Cassini missions. We successfully detected 73-95% of known plumes in images from all four mission datasets. We increased the detection rate by using a training subset. Additionally, we showed that the same tech- niques are applicable to differentiating geologic features, such as plumes and mountains, which exhibit similar appearances in images.
  • Gravity-Independent Mobility and Drilling on Natural Rock Using Microspines Authors: Parness, Aaron; Frost, Matthew; Thatte, Nitish; King, Jonathan
    To grip rocks on the surfaces of asteroids and comets, and to grip the cliff faces and lava tubes of Mars, a 250 mm diameter omni-directional anchor is presented that utilizes a hierarchical array of claws with suspension flexures, called microspines, to create fast, strong attachment. Prototypes have been demonstrated on vesicular basalt and a‘a lava rock supporting forces in all directions away from the rock. Each anchor can support >160 N tangent, >150 N at 45, and >180 N normal to the surface of the rock. A two-actuator selectively-compliant ankle interfaces these anchors to the Lemur IIB robot for climbing trials. A rotary percussive drill was also integrated into the anchor, demonstrating self-contained rock coring regardless of gravitational orientation. As a harder-than-zero-g proof of concept, 20mm diameter boreholes were drilled 83 mm deep in vesicular basalt samples, retaining a 12 mm diameter rock core in 3-6 pieces while in an inverted configuration, literally drilling into the ceiling.


  • Bilateral Teleoperation of Cooperative Manipulators Authors: Aldana, Carlos Iván; Nuno, Emmanuel; Basanez, Luis
    This paper presents an adaptive controller for the bilateral teleoperation of a system composed by a single local manipulator and multiple cooperative remote manipulators handling a common object. First, the nonlinear operational space dynamical behavior, of the complete teleoperation system, is derived and then, under the assumptions that the remote manipulators are rigidly grasping a non-deformable object and that the communications may induce constant time-delays, it is proved that velocities and position-orientation error between the local manipulator end-effector and the object asymptotically converge to zero. Simulations results are included to show the effectiveness of the proposed scheme.
  • Direct Force Reflecting Teleoperation with a Flexible Joint Robot Authors: Tobergte, Andreas; Albu-Schäffer, Alin
    This paper presents a high fidelity force feedback teleoperation control for surgical applications. Advanced control methods, such as flexible joint tracking control and passivity observation, are introduced in the direct force reflecting control architecture. A full state feedback controller of the flexible joint slave robot controls the motor position, velocity, the joint torque, and the torque derivative. The pose of the haptic device and the first three derivatives are observed to generate reference states for the robot control using the robot's inverse dynamics model. Interaction forces of the slave and the environment are measured with a force/torque sensor and directly sent back to the master device. Stability is guaranteed with a passivity observer that monitors the energy in the teleoperation system online and disconnects master and slave if the system operates beyond its stable region. The proposed control architecture is implemented with the sigma.7 haptic device and the MIRO robot. It is experimentally shown, that appropriately considering elasticities with full state reference and control of the slave, increases the dynamic range of the system enabling transparent and stable interaction with hard and soft environments.
  • Dynamic Scaling Interface for Assisted Teleoperation Authors: Munoz, Luis Miguel; Casals, Alicia
    Teleoperation, by adequately adapting computer interfaces, can benefit from the knowledge on human factors and psychomotor models in order to improve the effectiveness and efficiency in the execution of a task. While scaling is one of the performances frequently used in teleoperation tasks that require high precision, such as surgery, this article presents a scaling method that considers the system dynamics as well. The proposed dynamic scaling factor depends on the apparent position and velocity of the robot and targets. Such scaling improves the performance of teleoperation interfaces, thereby reducing user’s workload.
  • A Proportional Plus Damping Injection Controller for Teleoperators with Joint Flexibility and Time-Delays Authors: Nuno, Emmanuel; Sarras, Ioannis; Basanez, Luis; Kinnaert, Michel
    The problem of controlling a rigid bilateral teleoperator with time-delays has been effectively addressed since the late 80's. However, the control of flexible joint manipulators in a bilateral teleoperation scenario is still an open problem. In the present paper we report two versions of a proportional plus damping injection controller that are capable of globally stabilizing a nonlinear bilateral teleoperator with joint flexibility and variable time-delays. The first version controls a teleoperator composed by a rigid local manipulator and a flexible joint remote manipulator and the second version deals with local and remote manipulators with joint flexibility. For both schemes, it is proved that the joint and motor velocities and the local and remote position error are bounded. Moreover, if the human operator and remote environment forces are zero then velocities asymptotically converge to zero and position tracking is established. Simulations are presented to show the performance of the proposed controllers.
  • Stability of Position-Based Bilateral Telemanipulation Systems by Damping Injection Authors: Franken, Michel; Misra, Sarthak; Stramigioli, Stefano
    In this paper two different approaches to guaran- tee stability of bilateral telemanipulation systems are discussed. Both approaches inject damping into the system to guarantee passivity of the interaction with the device in the presence of time delays in the communication channel. The first approach derives tuning rules for a fixed viscous damper, whereas the second approach employs modulated dampers based upon the measured energy exchange with the device and enforces passivity in the time domain. Furthermore, a theoretical min- imum damping injection scheme is sketched that shows that the fixed damping approach is inherently conservative with respect to guaranteeing stability. Experimental results show that both the theoretical minimum damping scheme and a time domain passivity algorithm are successful in stabilizing the telemanipulation system for large time delays with lower gains of the damping elements than derived by the fixed damping injection approach. However, as damping is inherently present in the system, the tuning rules derived from the fixed damping injection approach can be used to identify if a time domain passivity algorithm is needed given boundary conditions on the actual time delays.
  • Bilateral Teleoperation of a Group of UAVs with Communication Delays and Switching Topology Authors: Secchi, Cristian; Franchi, Antonio; Buelthoff, Heinrich H.; Robuffo Giordano, Paolo
    In this paper, we present a passivity-based decentralized approach for bilaterally teleoperating a group of UAVs composing the slave side of the teleoperation system. In particular, we explicitly consider the presence of time delays, both among the master and slave, and within UAVs composing the group. Our focus is on analyzing suitable (passive) strategies that allow a stable teloperation of the group despite presence of delays, while still ensuring high flexibility to the group topology (e.g., possibility to autonomously split or join during the motion). The performance and soundness of the approach is validated by means of human/hardware-in-the-loop simulations (HHIL).

Applied Machine Learning

  • Active Learning from Demonstration for Robust Autonomous Navigation Authors: Silver, David; Bagnell, James; Stentz, Anthony
    Building robust and reliable autonomous navigation systems that generalize across environments and operating scenarios remains a core challenge in robotics. Machine learning has proven a significant aid in this task; in recent years learning from demonstration has become especially popular, leading to improved systems while requiring less expert tuning and interaction. However, these approaches still place a burden on the expert, specifically to choose the best demonstrations to provide. This work proposes two approaches for active learning from demonstration, in which the learning system requests specific demonstrations from the expert. The approaches identify examples for which expert demonstration is predicted to provide useful information on concepts which are either novel or uncertain to the current system. Experimental results demonstrate both improved generalization performance and reduced expert interaction when using these approaches.
  • Tendon-Driven Control of Biomechanical and Robotic Systems: A Path Integral Reinforcement Learning Approach Authors: Rombokas, Eric; Theodorou, Evangelos; Malhotra, Mark; Todorov, Emanuel; Matsuoka, Yoky
    We apply path integral reinforcement learning to a biomechanically accurate dynamics model of the index finger and then to the Anatomically Correct Testbed (ACT) robotic hand. We illustrate the applicability of Policy Improvement with Path Integrals to parameterized and non-parameterized control policies. This method is based on sampling variations in control, executing them in the real world, and minimizing a cost function on the resulting performance. Iteratively improving the control policy based on real-world performance requires no direct modeling of tendon network nonlinearities and contact transitions, allowing improved task performance.
  • Slip Prediction Using Hidden Markov Models: Multidimensional Sensor Data to Symbolic Temporal Pattern Learning Authors: Jamali, Nawid; Sammut, Claude
    We present experiments on the application of machine learning to predicting slip. The sensing information is provided by a force/torque sensor and an artificial finger, which has randomly distributed strain gauges and polyvinylidene fluoride (PVDF) films embedded in silicone resulting in multidimensional time series data on the finger-object contact. An incipient slip is detected by studying temporal patterns in the data. The data is analysed using probabilistic clustering that transforms the data into a sequence of symbols, which is used to train a hidden Markov model (HMM) classifier. Experimental results show that the classifier can predict a slip, at least 100ms before a slip takes place, with an accuracy of 96% on the validation set.
  • Collision-Free State Estimation Authors: Wong, Lawson L.S.; Kaelbling, Leslie; Lozano-Perez, Tomas
    In state estimation, we often want the maximum likelihood estimate of the current state. For the commonly used joint multivariate Gaussian distribution over the state space, this can be efficiently found using a Kalman filter. However, in complex environments the state space is often highly constrained. For example, for objects within a refrigerator, they cannot interpenetrate each other or the refrigerator walls. The multivariate Gaussian is unconstrained over the state space and cannot incorporate these constraints. In particular, the state estimate returned by the unconstrained distribution may itself be infeasible. Instead, we solve a related constrained optimization problem to find a good feasible state estimate. We illustrate this for estimating collision-free configurations for objects resting stably on a 2-D surface, and demonstrate its utility in a real robot perception domain.
  • Fault Detection and Isolation from Uninterpreted Data in Robotic Sensorimotor Cascades Authors: Censi, Andrea; Hakansson, Magnus; Murray, Richard
    One of the challenges in designing the next generation of robots operating in non-engineered environments is that there seems to be an infinite amount of causes that make the sensor data unreliable or actuators ineffective. In this paper, we discuss what faults are possible to detect using zero modeling effort: we start from uninterpreted streams of observations and commands, and without a prior knowledge of a model of the world. We show that in sensorimotor cascades it is possible to define static faults independently of a nominal model. We define an information-theoretic usefulness of a sensor reading and we show that it captures several kind of sensorimotor faults frequently encountered in practice. We particularize these ideas to the case of BDS/BGDS models, proposed in previous work as suitable candidates for describing generic sensorimotor cascades. We show several examples with camera and range-finder data, and we discuss a possible way to integrate these techniques in an existing robot software architecture.
  • Describing and Classifying Spatial and Temporal Contexts with OWL DL in Ubiquitous Robotics Authors: Sgorbissa, Antonio; Scalmato, Antonello; Zaccaria, Renato
    The article describes a system for describing and recognizing spatial and temporal patterns of events. The system is based on an ontology described through the Description Logics formalism and implemented in OWL DL. The approach is different from all other works in the literature since the system does not require an external reasoning engine, but relies only on the base mechanism for ontology classification. Experiments performed in two different scenarios are described, i.e., a Smart Home and a mobile robot for autonomous transportation operating within a partially automated building.