TechTalks from event: Technical session talks from ICRA 2012

Conference registration code to access these videos can be accessed by visiting this link: PaperPlaza. Step-by-step to access these videos are here: step-by-step process .
Why some of the videos are missing? If you had provided your consent form for your video to be published and still it is missing, please contact support@techtalks.tv

Needle Steering

  • A New Hand-Held Force-Amplifying Device for Micromanipulation Authors: Payne, Christopher; Tun Latt, Win; Yang, Guang-Zhong
    Abstract— This paper presents a new hand-held device capable of amplifying delicate micromanipulation forces during minimal invasive surgical tasks. It relays force sensing to the user through a simple sliding feature that is coupled to the surgical tool, which translates relative to the casing of the device held by the operator. This forgoes the need of grounding frames or anchoring mechanisms to the body, allowing the device to be used in general surgical environments without affecting the workflow. The device uses a three-phase linear motor that is compact and capable of generating high forces that allow amplification factors of up to ×15. It features a closed-loop force control scheme to perform the required force amplification in which the force exerted on to the user is measured, forming the feedback in the control loop. The device permits interchangeability of instrumentation through a simple docking feature, and thus can be generalized to a range of surgical instruments for micromanipulation tasks. Detailed bench test and user trials have been performed to validate the accuracy and practical performance of the device. The results have shown a five times reduction of the minimum force threshold perceived by the subjects and ergonomically sound manipulation advantages.
  • An Optical Actuation System and Curvature Sensor for a MR-Compatible Active Needle Authors: Ryu, Seok Chang; Quek, Zhan Fan; Renaud, Pierre; Black, Richard J.; Daniel, Bruce; Cutkosky, Mark
    A side optical actuation method is presented for a slender MR-compatible active needle. The needle includes an active region with a shape memory alloy (SMA) wire actuator, where the wire generates a contraction force when optically heated by a laser delivered though optical fibers, producing needle tip bending. A prototype, with multiple side heating spots, demonstrates twice as fast an initial response compared to fiber tip heating when 0.8 W of optical power is applied. A single-ended optical sensor with a gold reflector is also presented to measure the curvature independently of temperature as a function of optical transmission loss. Preliminary tests with the sensor prototype demonstrate approximately linear response and a repeatable signal, independent of the bending history.
  • Semi-automatic needle steering system with robotic manipulator Authors: Bernardes, Mariana Costa; Adorno, Bruno Vilhena; Poignet, Philippe; Borges, Geovany Araujo
    This paper presents a semi-automatic system for robotically assisted 2D needle steering that uses duty-cycling to perform insertions with arcs of adjustable curvature radius. It combines image feedback manually provided by an operator with an adaptive path planning strategy to compensate for system uncertainties and changes in the workspace during the procedure. Experimental results are presented to validate the proposed platform.
  • Torsional Dynamics Compensation Enhances Robotic Control of Tip-Steerable Needles Authors: Swensen, John; Cowan, Noah J.
    Needle insertions serve a critical role in a wide variety of medical interventions. Steerable needles provide a means by which to enhance existing percutaneous procedures and afford the development of entirely new ones. Here, we present a new time-varying model for the torsional dynamics of a steerable needle, along with a new controller that takes advantage of the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions caused during insertion of the needle into the tissue. Extensive simulations demonstrate the improvement over a model that neglects torsional dynamics, and illustrates the possible effect of torsional model order on efficacy. Pilot feedback control experiments, conducted in artificial tissue (plastisol) under stereo image guidance, validate the overall approach: our results substantially out-perform previously reported experimental results on controlling tip-steerable needles.
  • The Impact of Interaction Model on Stability and Transparency in Bilateral Teleoperation for Medical Applications Authors: Sanchez Secades, Luis Alonso; LE, Minh-Quyen; Liu, Chao; Zemiti, Nabil; Poignet, Philippe
    An analysis of stability and transparency of a force feedback teleoperation system for cutting-edge robotic surgery is presented. Previous works in teleoperated robotic surgery do not consider the real behavior of the environment, which was supposed to be only elastic. However, new surgical procedures in which the environment dynamics plays a crucial role start emerging as a result of technological progress. In robotic assisted beating-heart surgery, for instance, the dynamics of the contact between surgical tools and soft tissues has an impact not only in the performance of the force control task but also in the performance of the teleoperation control scheme in terms of transparency and stability. Therefore, a more realistic description of the environment has to be adopted in order to safely operate during robot-patient interaction. For this purpose, a viscoelastic contact model is introduced into the bilateral teleoperation scheme, and a performance study is provided. The obtained results show the advantages of the selected approach when targeting teleoperated surgical interventions in which the interaction dynamics has become a significant issue.

Rehabilitation Robotics

  • A Comparison of Parallel and Series Elastic Elements in an Actuator for Mimicking Human Ankle Joint in Walking and Running Authors: Grimmer, Martin; Seyfarth, Andre; Eslamy, Mahdy
    Elastic elements in prosthetic devices can help to reduce peak power (PP) and energy requirements (ER) for the actuators. Calculations showed that it is impossible with current commercial motor technology to mimic human ankle behavior in detail for higher walking and running speeds with single motor solutions using a Serial Elastic Actuator (SEA). Concerning this result we checked the requirements of a parallel elastic actuator (PEA) and a combination of serial and parallel (SE+PEA) springs. We found that a PEA can reduce PP additionally in comparison to the SEA by preloading the spring in the flight phase. This reduces also peak torque. But this loading needs additional energy so that the ER increase in comparison to the SEA. The SE+PEA concept can further decrease PP. With that, the ER are less than the PEA but higher than for the SEA. The results show less benefit for the PEA and the SE+PEA when a constant stiffness and a fixed parallel spring slack length is used for both gaits and all speeds. All concepts show that mimicking human ankle joint behavior in running and walking at higher speeds is still challenging for single motor devices.
  • Measuring End-Point Stiffness by Means of a Modular Mechatronic System Authors: Masia, Lorenzo; Squeri, Valentina; Sandini, Giulio; Morasso, Pietro Giovanni
    human arm muscular stiffness measurement is often a complex procedure which is of great interest for many disciplines from biomechanics to medicine and robotics. Modulation of impedance represents the principal mechanism underlying control of movements and interaction with external environment. Past literature proposed several methods to estimate multijoint hand stiffness while postural maintaining and dynamic tasks, mainly performed by means of planar robotic manipulanda. Despite these approaches are still considered robust and accurate, the computational burden of the robotic controller and hardware limitations make them not easy to implement. In the present paper a novel mechanism conceived for measuring multijoint planar stiffness by in single trial and in a reduced execution time is described and tested in different configurations. The device consisted in a mechanical rotary mechanism which applies cyclic radial perturbation to human arm of a known displacement and the force is acquired by means of a 6-axes commercial load cell. The outcomes suggest that the system is not only reliable in standalone mode but allows obtaining a reliable bi-dimensional estimation of arm stiffness even plugged in a planar manipulandum, dramatically reducing the amount of time for measurement and allowing to decouple the two controllers of the planar manipulator on which is mounted and the device itself.
  • AssistOn-SE: A Self-Aligning Shoulder-Elbow Exoskeleton Authors: Ergin, Mehmet Alper; Patoglu, Volkan
    We present AssistOn-SE, a novel powered exoskeleton for robot-assisted rehabilitation that allows for movements of the shoulder girdle as well as shoulder rotations. Automatically adjusting its joint axes, AssistOn-SE can enable a perfect match between human joint axes and the device axes, not only guaranteeing ergonomy and comfort throughout the therapy, but also extending the usable range of motion for the shoulder joint. Moreover, the adjustability feature significantly shortens the setup time required to attach the patient to the exoskeleton, allowing more effective time be spend on exercises instead of wasting this valuable resource for adjustments. Back-driveable design of AssistOn-SE supports both passive translational movements of the center of glenohumeral joint and independent active control of these degrees of freedom. Thanks to this property, glenohumeral mobilization and scapular stabilization exercises can also be delivered with AssistOn-SE, extending the type of therapies that can be administered using upper-arm exoskeletons. We introduce the design of the exoskeleton and present the kinematic analysis of its self-aligning joint. We also provide implementation details for an early prototype as well as some experimental results detailing range of motion of the device and its ability to track movements of the shoulder girdle.

Modular Robots & Multi-Agent Systems

  • Programming and Controlling Self-Folding Sheets Authors: An, Byoungkwon; Rus, Daniela
    This paper describes a robot in the form of a self-folding sheet that is capable of origami-style autonomous folding. We describe the hardware device we designed and fabricated. The device is a sheet with a box-pleated pattern and an integrated electronic substrate and actuators. The sheet is programmed and controlled to achieve different shapes using an idea called sticker programming. We describe the sticker controller and its instantiation. We also describe the algorithms for programming and controlling a given sheet to self-fold into a desired shape. Finally we present experiments with a 4x4 hardware device and an 8x8 hardware device.
  • Task Allocation with Executable Coalitions in Multirobot Tasks Authors: Zhang, Yu (Tony); Parker, Lynne
    In our prior work, we proposed the IQ-ASyMTRe architecture with a measure of information quality to reason about forming coalitions in multirobot tasks. The formed coalitions are guaranteed to be executable, given the current configurations of the robots and environment. A cost and a quality measure are associated with each coalition to further determine its utility for the task. In this paper, we show that IQ-ASyMTRe-like architectures can be utilized to significantly reduce the overall complexity of task allocation by considering only executable coalitions. For implementation, we apply a layering technique such that most existing methods for task allocation can be easily incorporated. Furthermore, we introduce a general process to address situations in which no executable coalitions are available for certain tasks, and integrate it with IQ-ASyMTRe to achieve more autonomy. Such an approach is able to autonomously decompose unsatisfied preconditions of the required task behaviors into satisfiable components, in order to generate partial order plans for them accordingly. We show how this process can be implemented using a market-based approach. Simulation results are provided to demonstrate these techniques.
  • Mathematical Programming for Multi-Vehicle Motion Planning Problems Authors: Abichandani, Pramod; Ford, Gabriel; Benson, Hande; Kam, Moshe
    Real world Multi-Vehicle Motion Planning (MVMP) problems require the optimization of suitable performance measures under an array of complex and challenging constraints involving kinematics, dynamics, communication connectivity, target tracking, and collision avoidance. The general MVMP problem can thus be formulated as a mathematical program (MP). In this paper we present a mathematical programming (MP) framework that captures the salient features of the general MVMP problem. To demonstrate the use of this framework for the formulation and solution of MVMP problems, we examine in detail four representative works and summarize several other related works. As MP solution algorithms and associated numerical solvers continue to develop, we anticipate that MP solution techniques will be applied to an increasing number of MVMP problems and that the framework and formulations presented in this paper may serve as a guide for future MVMP research.
  • Decentralized Multi-Robot Cooperation with Auctioned POMDPs Authors: Capitan, Jesus; Spaan, Matthijs; Merino, Luis; Ollero, Anibal
    Planning under uncertainty faces a scalability problem when considering multi-robot teams, as the information space scales exponentially with the number of robots. To address this issue, this paper proposes to decentralize multi-agent Partially Observable Markov Decision Process (POMDPs) while maintaining cooperation between robots by using POMDP policy auctions. Also, communication models in the multi-agent POMDP literature severely mismatch with real inter-robot communication. We address this issue by applying a decentralized data fusion method in order to efficiently maintain a joint belief state among the robots. The paper focuses on a cooperative tracking application, in which several robots have to jointly track a moving target of interest. The proposed ideas are illustrated in real multi-robot experiments, showcasing the flexible and robust cooperation that our techniques can provide.