TechTalks from event: ICML 2011

Social Networks

  • Uncovering the Temporal Dynamics of Diffusion Networks Authors: Manuel Gomez Rodriguez; David Balduzzi; Bernhard Schölkopf
    Time plays an essential role in the diffusion of information, influence and disease over networks. In many cases we only observe when a node copies information, makes a decision or becomes infected -- but the connectivity, transmission rates between nodes and transmission sources are unknown. Inferring the underlying dynamics is of outstanding interest since it enables forecasting, influencing and retarding infections, broadly construed. To this end, we model diffusion processes as discrete networks of continuous temporal processes occurring at different rates. Given cascade data -- observed infection times of nodes -- we infer the edges of the global diffusion network and estimate the transmission rates of each edge that best explain the observed data. The optimization problem is convex. The model naturally (without heuristics) imposes sparse solutions and requires no parameter tuning. The problem decouples into a collection of independent smaller problems, thus scaling easily to networks on the order of hundreds of thousands of nodes. Experiments on real and synthetic data show that our algorithm both recovers the edges of diffusion networks and accurately estimates their transmission rates from cascade data.
  • Dynamic Egocentric Models for Citation Networks Authors: Duy Vu; Arthur Asuncion; David Hunter; Padhraic Smyth
    The analysis of the formation and evolution of networks over time is of fundamental importance to social science, biology, and many other fields. While longitudinal network data sets are increasingly being recorded at the granularity of individual time-stamped events, most studies only focus on collapsed cross-sectional snapshots of the network. In this paper, we introduce a dynamic egocentric framework that models continuous-time network data using multivariate counting processes. For inference, an efficient partial likelihood approach is used, allowing our methods to scale to large networks. We apply our techniques to various citation networks and demonstrate the predictive power and interpretability of the learned statistical models.