ICML 2011
TechTalks from event: ICML 2011
Social Networks
-
Uncovering the Temporal Dynamics of Diffusion NetworksTime plays an essential role in the diffusion of information, influence and disease over networks. In many cases we only observe when a node copies information, makes a decision or becomes infected -- but the connectivity, transmission rates between nodes and transmission sources are unknown. Inferring the underlying dynamics is of outstanding interest since it enables forecasting, influencing and retarding infections, broadly construed. To this end, we model diffusion processes as discrete networks of continuous temporal processes occurring at different rates. Given cascade data -- observed infection times of nodes -- we infer the edges of the global diffusion network and estimate the transmission rates of each edge that best explain the observed data. The optimization problem is convex. The model naturally (without heuristics) imposes sparse solutions and requires no parameter tuning. The problem decouples into a collection of independent smaller problems, thus scaling easily to networks on the order of hundreds of thousands of nodes. Experiments on real and synthetic data show that our algorithm both recovers the edges of diffusion networks and accurately estimates their transmission rates from cascade data.
-
Dynamic Egocentric Models for Citation NetworksThe analysis of the formation and evolution of networks over time is of fundamental importance to social science, biology, and many other fields. While longitudinal network data sets are increasingly being recorded at the granularity of individual time-stamped events, most studies only focus on collapsed cross-sectional snapshots of the network. In this paper, we introduce a dynamic egocentric framework that models continuous-time network data using multivariate counting processes. For inference, an efficient partial likelihood approach is used, allowing our methods to scale to large networks. We apply our techniques to various citation networks and demonstrate the predictive power and interpretability of the learned statistical models.
- All Sessions
- Keynotes
- Bandits and Online Learning
- Structured Output
- Reinforcement Learning
- Graphical Models and Optimization
- Recommendation and Matrix Factorization
- Neural Networks and Statistical Methods
- Latent-Variable Models
- Large-Scale Learning
- Learning Theory
- Feature Selection, Dimensionality Reduction
- Invited Cross-Conference Track
- Neural Networks and Deep Learning
- Latent-Variable Models
- Active and Online Learning
- Tutorial : Collective Intelligence and Machine Learning
- Tutorial: Machine Learning in Ecological Science and Environmental Policy
- Tutorial: Machine Learning and Robotics
- Ensemble Methods
- Tutorial: Introduction to Bandits: Algorithms and Theory
- Tutorial: Machine Learning for Large Scale Recommender Systems
- Tutorial: Learning Kernels
- Test-of-Time
- Best Paper
- Robotics and Reinforcement Learning
- Transfer Learning
- Kernel Methods
- Optimization
- Learning Theory
- Invited Cross-Conference Session
- Neural Networks and Deep Learning
- Reinforcement Learning
- Bayesian Inference and Probabilistic Models
- Supervised Learning
- Social Networks
- Evaluation Metrics
- statistical relational learning
- Outlier Detection
- Time Series
- Graphical Models and Bayesian Inference
- Sparsity and Compressed Sensing
- Clustering
- Game Theory and Planning and Control
- Semi-Supervised Learning
- Kernel Methods and Optimization
- Neural Networks and NLP
- Probabilistic Models & MCMC
- Online Learning
- Ranking and Information Retrieval