ICML 2011
TechTalks from event: ICML 2011
Neural Networks and Deep Learning
-
Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann MachinesBoltzmann machines are often used as building blocks in greedy learning of deep networks. However, training even a simplified model, known as restricted Boltzmann machine (RBM), can be extremely laborious: Traditional learning algorithms often converge only with the right choice of the learning rate scheduling and the scale of the initial weights. They are also sensitive to specific data representation: An equivalent RBM can be obtained by flipping some bits and changing the weights and biases accordingly, but traditional learning rules are not invariant to such transformations. Without careful tuning of these training settings, traditional algorithms can easily get stuck at plateaus or even diverge. In this work, we present an enhanced gradient which is derived such that it is invariant to bit-flipping transformations. We also propose a way to automatically adjust the learning rate by maximizing a local likelihood estimate. Our experiments confirm that the proposed improvements yield more stable training of RBMs.
-
On optimization methods for deep learningThe predominant methodology in training deep learning advocates the use of stochastic gradient descent methods (SGDs). Despite its ease of implementation, SGDs are difficult to tune and parallelize. These problems make it challenging to develop, debug and scale up deep learning algorithms with SGDs. In this paper, we show that more sophisticated off-the-shelf optimization methods such as Limited memory BFGS (L-BFGS) and Conjugate gradient (CG) with linesearch can significantly simplify and speed up the process of pretraining deep algorithms. In our experiments, the difference between L-BFGS/CG and SGDs are more pronounced if we consider algorithmic extensions (e.g., sparsity regularization) and hardware extensions (e.g., GPUs or computer clusters). Our experiments with distributed optimization support the use of L-BFGS with locally connected networks and convolutional neural networks. Using L-BFGS, our convolutional network model achieves 0.69\% on the standard MNIST dataset. This is a state-of-the-art result on MNIST among algorithms that do not use distortions or pretraining.
-
The Hierarchical Beta Process for Convolutional Factor Analysis and Deep LearningA convolutional factor-analysis model is developed, with the number of filters (factors) inferred via the beta process (BP) and hierarchical BP, for single-task and multi-task learning, respectively. The computation of the model parameters is implemented within a Bayesian setting, employing Gibbs sampling; we explicitly exploit the convolutional nature of the expansion to accelerate computations. The model is used in a multi-level (“deep”) analysis of general data, with specific results presented for image-processing data sets, e.g., classification.
-
Multimodal Deep LearningDeep networks have been successfully applied to unsupervised feature learning for single modalities (e.g., text, images or audio). In this work, we propose a novel application of deep networks to learn features over multiple modalities. We present a series of tasks for multimodal learning and show how to train deep networks that learn features to address these tasks. In particular, we demonstrate cross modality feature learning, where better features for one modality (e.g., video) can be learned if multiple modalities (e.g., audio and video) are present at feature learning time. Furthermore, we show how to learn a shared representation between modalities and evaluate it on a unique task, where the classifier is trained with audio-only data but tested with video-only data and vice-versa. Our methods are validated on the CUAVE and AVLetters datasets with an audio-visual speech classification task, demonstrating best published visual speech classification on AVLetters and effective shared representation learning.
- All Sessions
- Keynotes
- Bandits and Online Learning
- Structured Output
- Reinforcement Learning
- Graphical Models and Optimization
- Recommendation and Matrix Factorization
- Neural Networks and Statistical Methods
- Latent-Variable Models
- Large-Scale Learning
- Learning Theory
- Feature Selection, Dimensionality Reduction
- Invited Cross-Conference Track
- Neural Networks and Deep Learning
- Latent-Variable Models
- Active and Online Learning
- Tutorial: Learning Kernels
- Tutorial : Collective Intelligence and Machine Learning
- Tutorial: Machine Learning in Ecological Science and Environmental Policy
- Tutorial: Machine Learning and Robotics
- Tutorial: Introduction to Bandits: Algorithms and Theory
- Ensemble Methods
- Tutorial: Machine Learning for Large Scale Recommender Systems
- Test-of-Time
- Best Paper
- Robotics and Reinforcement Learning
- Transfer Learning
- Kernel Methods
- Optimization
- Learning Theory
- Invited Cross-Conference Session
- Neural Networks and Deep Learning
- Reinforcement Learning
- Bayesian Inference and Probabilistic Models
- Supervised Learning
- Social Networks
- Evaluation Metrics
- statistical relational learning
- Outlier Detection
- Time Series
- Graphical Models and Bayesian Inference
- Sparsity and Compressed Sensing
- Clustering
- Game Theory and Planning and Control
- Semi-Supervised Learning
- Kernel Methods and Optimization
- Neural Networks and NLP
- Probabilistic Models & MCMC
- Online Learning
- Ranking and Information Retrieval