ICML 2011
TechTalks from event: ICML 2011
Best Paper
-
Computational Rationalization: The Inverse Equilibrium ProblemModeling the purposeful behavior of imperfect agents from a small number of observations is a challenging task. When restricted to the single-agent decision-theoretic setting, inverse optimal control techniques assume that observed behavior is an approximately optimal solution to an unknown decision problem. These techniques learn a utility function that explains the example behavior and can then be used to accurately predict or imitate future behavior in similar observed or unobserved situations. In this work, we consider similar tasks in competitive and cooperative multi-agent domains. Here, unlike single-agent settings, a player cannot myopically maximize its reward --- it must speculate on how the other agents may act to influence the game's outcome. Employing the game-theoretic notion of regret and the principle of maximum entropy, we introduce a technique for predicting and generalizing behavior, as well as recovering a reward function in these domains.
- All Sessions
- Keynotes
- Bandits and Online Learning
- Structured Output
- Reinforcement Learning
- Graphical Models and Optimization
- Recommendation and Matrix Factorization
- Neural Networks and Statistical Methods
- Latent-Variable Models
- Large-Scale Learning
- Learning Theory
- Feature Selection, Dimensionality Reduction
- Invited Cross-Conference Track
- Neural Networks and Deep Learning
- Latent-Variable Models
- Active and Online Learning
- Tutorial : Collective Intelligence and Machine Learning
- Tutorial: Machine Learning in Ecological Science and Environmental Policy
- Tutorial: Machine Learning and Robotics
- Ensemble Methods
- Tutorial: Introduction to Bandits: Algorithms and Theory
- Tutorial: Machine Learning for Large Scale Recommender Systems
- Tutorial: Learning Kernels
- Test-of-Time
- Best Paper
- Robotics and Reinforcement Learning
- Transfer Learning
- Kernel Methods
- Optimization
- Learning Theory
- Invited Cross-Conference Session
- Neural Networks and Deep Learning
- Reinforcement Learning
- Bayesian Inference and Probabilistic Models
- Supervised Learning
- Social Networks
- Evaluation Metrics
- statistical relational learning
- Outlier Detection
- Time Series
- Graphical Models and Bayesian Inference
- Sparsity and Compressed Sensing
- Clustering
- Game Theory and Planning and Control
- Semi-Supervised Learning
- Kernel Methods and Optimization
- Neural Networks and NLP
- Probabilistic Models & MCMC
- Online Learning
- Ranking and Information Retrieval