TechTalks from event: NAACL 2015

Best Paper Plenary Session

  • Retrofitting Word Vectors to Semantic Lexicons Authors: Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard Hovy, Noah A. Smith
    Vector space word representations are learned from distributional information of words in large corpora. Although such statistics are semantically informative, they disregard the valuable information that is contained in semantic lexicons such as WordNet, FrameNet, and the Paraphrase Database. This paper proposes a method for refining vector space representations using relational information from semantic lexicons by encouraging linked words to have similar vector representations, and it makes no assumptions about how the input vectors were constructed. Evaluated on a battery of standard lexical semantic evaluation tasks in several languages, we obtain substantial improvements starting with a variety of word vector models. Our refinement method outperforms prior techniques for incorporating semantic lexicons into the word vector training algorithms.
  • Youre Mr. Lebowski, Im the Dude: Inducing Address Term Formality in Signed Social Networks Authors: Vinodh Krishnan and Jacob Eisenstein
    We present an unsupervised model for inducing signed social networks from the content exchanged across network edges. Inference in this model solves three problems simultaneously: (1) identifying the sign of each edge; (2) characterizing the distribution over content for each edge type; (3) estimating weights for triadic features that map to theoretical models such as structural balance. We apply this model to the problem of inducing the social function of address terms, such as Madame, comrade, and dude. On a dataset of movie scripts, our system obtains a coherent clustering of address terms, while at the same time making intuitively plausible judgments of the formality of social relations in each film. As an additional contribution, we provide a bootstrapping technique for identifying and tagging address terms in dialogue.
  • Unsupervised Morphology Induction Using Word Embeddings Authors: Radu Soricut and Franz Och
    We present a language agnostic, unsupervised method for inducing morphological transformations between words. The method relies on certain regularities manifest in high-dimensional vector spaces. We show that this method is capable of discovering a wide range of morphological rules, which in turn are used to build morphological analyzers. We evaluate this method across six different languages and nine datasets, and show significant improvements across all languages.