TechTalks from event: NAACL 2015

6A: Generation and Summarization

  • Socially-Informed Timeline Generation for Complex Events Authors: Lu Wang, Claire Cardie, Galen Marchetti
    Existing timeline generation systems for complex events consider only information from traditional media, ignoring the rich social context provided by user-generated content that reveals representative public interests or insightful opinions. We instead aim to generate socially-informed timelines that contain both news article summaries and selected user comments. We present an optimization framework designed to balance topical cohesion between the article and comment summaries along with their informativeness and coverage of the event. Automatic evaluations on real-world datasets that cover four complex events show that our system produces more informative timelines than state-of-the-art systems. In human evaluation, the associated comment summaries are furthermore rated more insightful than editors picks and comments ranked highly by users.
  • Movie Script Summarization as Graph-based Scene Extraction Authors: Philip John Gorinski and Mirella Lapata
    In this paper we study the task of movie script summarization, which we argue could enhance script browsing, give readers a rough idea of the script's plotline, and speed up reading time. We formalize the process of generating a shorter version of a screenplay as the task of finding an optimal chain of scenes. We develop a graph-based model that selects a chain by jointly optimizing its logical progression, diversity, and importance. Human evaluation based on a question-answering task shows that our model produces summaries which are more informative compared to competitive baselines.
  • Toward Abstractive Summarization Using Semantic Representations Authors: Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, Noah A. Smith
    We present a novel abstractive summarization framework that draws on the recent development of a treebank for the Abstract Meaning Representation (AMR). In this framework, the source text is parsed to a set of AMR graphs, the graphs are transformed into a summary graph, and then text is generated from the summary graph. We focus on the graph-to-graph transformation that reduces the source semantic graph into a summary graph, making use of an existing AMR parser and assuming the eventual availability of an AMR-to-text generator. The framework is data-driven, trainable, and not specifically designed for a particular domain. Experiments on gold-standard AMR annotations and system parses show promising results. Code is available at: https://github.com/summarization