TechTalks from event: CVPR 2014 Video Spotlights

Orals 1A : Matching & Reconstruction

  • Reconstructing PASCAL VOC Authors: Sara Vicente, Jo
    We address the problem of populating object category detection datasets with dense, per-object 3D reconstructions, bootstrapped from class labels, ground truth figure-ground segmentations and a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion, then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions on one of the most challenging existing object-category detection datasets, PASCAL VOC. Our results may re-stimulate once popular geometry-oriented model-based recognition approaches.
  • Fast and Accurate Image Matching with Cascade Hashing for 3D Reconstruction Authors: Jian Cheng, Cong Leng, Jiaxiang Wu, Hainan Cui, Hanqing Lu
    Image matching is one of the most challenging stages in 3D reconstruction, which usually occupies half of computational cost and inaccurate matching may lead to failure of reconstruction. Therefore, fast and accurate image matching is very crucial for 3D reconstruction. In this paper, we proposed a Cascade Hashing strategy to speed up the image matching. In order to accelerate the image matching, the proposed Cascade Hashing method is designed to be three-layer structure: hashing lookup, hashing remapping, and hashing ranking. Each layer adopts different measures and filtering strategies, which is demonstrated to be less sensitive to noise. Extensive experiments show that image matching can be accelerated by our approach in hundreds times than brute force matching, even achieves ten times or more than Kd-tree based matching while retaining comparable accuracy.